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The role of the memory subsystem 
in achieving AI PC efficiency 
Memory is a key enabler along with other hardware accelerators to 
realize the full potential of AI PCs. 

In the evolving artificial intelligence (AI) landscape, the demand for 
more capable data models across diverse domains has led to the rapid 
expansion of model sizes. This fast-paced evolution continually 
increases the size and complexity of AI models, creating unprecedented 
demands on both compute and the memory subsystem performance to 
process and integrate vast amounts of data from various inputs — text, 
audio, video, and more. As AI continues to progress, advanced memory 
solutions are essential to support this computational growth, not only 
for large-scale data centers but also for edge devices, including AI PCs, 
which bring AI capabilities directly to personal and professional devices. 
Optimized memory solutions are instrumental in enabling the next 
generation of AI-driven innovations across devices and platforms. 

This white paper delves into the architectural aspects of AI PCs, 
focusing on the collaborative efforts of Micron and Lenovo. It provides 
a comparative analysis of DDR5 and LPCAMM2 memory solutions on a 
Lenovo AI PC powered by the Intel® Core™ Ultra 9 Processor 185H 
(formerly code named Meteor Lake).2 It highlights performance metrics, 
power savings and the efficiency of these memory solutions in real-
world AI workloads. Additionally, it explores the benefits of dual-channel 
versus single-channel memory and the advantages of higher memory 
capacities across various AI workloads tested on Compal platforms 
equipped with the Intel® Core™ Ultra 7 Processor 165U. This 
comprehensive analysis offers insights into how different memory 
solutions are influencing and shaping AI PCs. The results serve as a 
valuable resource for system and product architects, as well as key PC 
stakeholders such as OEMs and ODMs, guiding them in making 
informed decisions regarding the selection and integration of the best 
memory subsystem for their platform to deliver an optimal AI PC 
experience for their customers. 

2. Data collected from systems in a Micron lab and specified Lenovo systems. 
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Key takeaways 

20% 
Faster inference 

When running AI inference on a system with a 
central processing unit (CPU), integrated 
GPU (iGPU), and neural processing unit 
(NPU), a configuration with dual-channel 
DDR5 16GB+16GB is on average 20% faster 
(inference time) than a single-channel DDR5 
32GB.1  

85+% 
Lower power consumption 

For various benchmarks, LPCAMM2 
consumes around 85% less power than DDR5 
across CPU, iGPU, and NPU. Subsequently, 
LPCAMM2 is more power efficient than DDR5, 
offering up to seven times improvement in 
power efficiency (performance per watt) for 
the memory subsystem. 

16GB+ 
More capacity required for AI PC 
With 32GB and above, users prevent out-of-
memory errors that trigger swapping 
mechanisms and slow down the system 
operation speed by up to 50%. LPCAMM2 
offers up to 64GB, ensuring future readiness 
for advanced models. 

1. Across various model benchmarks and language models. 
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Introduction 
In the dynamic realm of AI, the advent of AI PC platforms marks a significant leap forward. These platforms are 
revolutionizing the processing of complex computational tasks on PCs by enabling local data processing. This results 
in improved performance, enhanced data privacy and security while reducing latency and network congestion, 
enabling a superior user experience. Just as past technological innovations like personal computers, mobile devices 
and cloud computing have transformed various aspects of our lives, the recent surge in generative AI is driving 
unprecedented innovation across every facet of technology, including the emergence of AI PCs.  

What is an AI PC? 
An AI PC is a computing device that integrates AI processing capabilities directly into its hardware and software. 
Unlike traditional PCs, which rely on application software or cloud services to perform AI tasks, AI PCs have built-in AI 
processors or accelerators that enable AI by performing matrix multiplication locally. 

AI PCs offer several performance advantages over standard laptops, primarily due to their specialized hardware for AI 
tasks such as processing sensitive user data locally to ensure privacy for tasks like facial recognition or biometric 
authentication. Here are some key differences: 

Heterogeneous compute architecture: AI PCs have adopted heterogeneous computing architecture with a 
combination of CPU, integrated GPU and NPU, where the NPU provides dedicated hardware acceleration for AI tasks 
and has superior performance per watt as showcased in the following pages . 

Local AI processing: AI PCs can run AI models locally with better performance, reducing dependency on cloud-based 
solutions. This reduces the risk of data interception during transmission and enhances privacy. Standard laptops that 
do not have an NPU have limited capability for local AI processing. 

On-device AI accelerators: AI PCs are optimized for AI applications with faster processing, making them more 
efficient for complex AI tasks. The NPU in AI PCs is designed to optimally perform matrix multiplications and 
convolution operations, which are fundamental to AI and machine learning. It leverages parallel arrays of processing to  
perform multiple operations simultaneously, improving performance  with lower power consumption and offloading the 
CPU to perform general-purpose computing applications and iGPUs to render complex images for other applications 
such as video editing and gaming, etc. [4] 

Power efficiency: AI PCs are more power-efficient for tasks such as video enhancement or image recognition due to 
their specialized hardware accelerators, which are designed to perform AI tasks efficiently compared to general-
purpose CPUs. Because standard laptops lack these accelerators, they are less efficient when running AI workloads. 

Software ecosystem: The software ecosystem of AI PCs is optimized for AI applications and frameworks, supporting 
built-in AI features such as real-time language translation and enhanced video conferencing. Standard laptops have a 
standard software ecosystem with limited built-in AI features. 

Enhanced security: AI PCs equipped with AI-based security systems can analyze data from patterns and behaviors in 
real time to identify potential threats such as malware and phishing attempts, strengthening overall system security. 

For the average user, an AI PC offers enhanced performance, security, privacy and power efficiency. Unlike standard 
PCs, which transfer data to the cloud for AI tasks and can suffer from network congestion, AI PCs handle these tasks 
locally. This capability transforms the user experience for AI applications. Professionals, especially in creative and 
technical fields, can leverage the powerful on-device AI capability of AI PCs to boost productivity, maintain data 
privacy and streamline complex tasks. For example, writers and content creators can use local generative AI to refine 
articles and language or rapidly brainstorm ideas.  
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Figure 1: AI PC 
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AI applications 
Below are several examples of AI applications whose performance can significantly benefit when run on an AI PC. 
These applications profit from the enhanced processing power, reduced latency (data can be processed locally 
instead of going to the cloud), and improved efficiency provided by AI PCs, making them a valuable tool for both 
personal and professional use even while on the go.  

Real-time language translation: AI PCs can perform real-time language translation locally, providing faster and more 
accurate translations without relying on cloud services that require a network connection. 

Enhanced video conferencing: AI PCs can improve video conferencing experiences by offering features like real-time 
background removal, noise reduction and automatic framing. 

Content creation: AI PCs are excellent for content creation tasks such as video editing, image enhancement and 
automated content generation. Their specialized hardware allows them to handle these tasks more efficiently. 

Speech-to-text transcription: AI PCs can transcribe speech-to-text in real time, making them useful for meetings, 
lectures and other scenarios where quick and accurate transcription is needed. 

Security applications: AI PCs can run security applications like phishing detection and malware analysis locally, 
providing enhanced security and privacy. 

AI assistants: AI PCs can run AI assistants locally, offering better performance and responsiveness for tasks like 
scheduling, reminders and information retrieval. 

Advanced data analysis: AI PCs can perform complex data analysis tasks more efficiently, making them ideal for 
applications and professionals in fields like finance, healthcare and research. 

Neural processing unit (NPU) 
The integration of NPUs into PCs marks a major advancement in computing, enabling more efficient processing of AI 
tasks and paving a path for new AI-driven applications and features to emerge. Most users are familiar with CPUs and 
GPUs in their PCs. CPUs are designed for general-purpose computing tasks, while GPUs, including integrated GPUs 
(iGPUs), are equipped with numerous specialized cores capable of performing multiple operations simultaneously, 
focusing on performance. This architecture makes GPUs particularly well-suited for image processing, rendering 
graphics and AI computation. 

NPUs, on the other hand, are specifically designed to efficiently handle AI and machine learning operations. They 
maximize performance per watt (power efficiency), making them ideal for tasks that require continuous processing 
without draining battery life. With optimal power efficiency, NPUs can deliver robust AI capabilities while enhancing the 
overall performance of mobile AI-enabled devices. This means AI tasks can be processed efficiently on battery power, 
allowing users to leverage advanced AI features without needing to be plugged into a power outlet. 

  
Figure 2: Relative speed of CPU, NPU and GPU for AI tasks 
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A relationship between performance, power and power efficiency 

NPUs are faster than CPUs at computing AI tasks but not as fast as GPUs. However, NPUs use far less power than 
GPUs, making them power efficient. This is ideal for AI applications that require continuous processing, especially for 
users working where there is no connectivity. Additionally, while the NPU handles AI-related tasks, the CPU and GPU 
are freed up to handle their respective tasks, boosting overall system performance. In summary, NPUs complement 
GPUs by providing a more power-efficient solution for AI tasks, allowing for better overall system performance and 
longer battery life in AI PCs. 

Overview of NPU architecture 

The NPU is a specialized processor designed to accelerate neural network computations. It features multiple memory 
management units (MMUs), direct memory access (DMA) engines and multiply-accumulate (MAC) units, also known as 
hardware acceleration blocks, to execute multiply-accumulate operations fundamental to neural networks. The number 
of MAC units in an NPU determines its parallel processing capability, directly impacting its performance, which is 
measured in tera operations per second (TOPS). Understanding the parameters that contribute to the TOPS metric is 
crucial for gaining deeper insights into an NPU's performance.  

To calculate TOPS, start with operations per second (OPS). Multiply is 1 operation, and accumulate is 1 operation, for a 
total of 2 operations per MAC unit per clock. Therefore, OPS equals two times the number of MAC units multiplied by 
their operating frequency. Finally, divide OPS by one trillion to convert OPS to TOPS. [1][5] 

𝑇𝑂𝑃𝑆 =
2 ∗ 𝑀𝐴𝐶	𝑢𝑛𝑖𝑡	𝑐𝑜𝑢𝑛𝑡 ∗ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

1	𝑡𝑟𝑖𝑙𝑙𝑖𝑜𝑛  

MAC unit count 

A MAC operation involves two fundamental operations: 1) multiplication and 2) addition to an accumulator. Each MAC 
unit can perform one multiplication and one addition per clock cycle, effectively executing two operations per clock 
cycle (the “2” in the TOPS equation above). A given NPU has a set number of MAC units that can operate at varying 
levels of precision, depending on the NPU's architecture. 

Operating frequency 

Frequency refers to the clock speed, or cycles per second, at which an NPU and its MAC units (as well as CPUs and 
GPUs) operate, directly affecting overall performance. A higher frequency enables more operations per unit of time, 
resulting in faster processing speeds. However, increasing the frequency also leads to higher power consumption and 
heat generation, which can negatively impact battery life and user experience. The TOPS value for processors is 
typically quoted at their peak operating frequency. 

Memory and token generation 
NPUs rely on external memory to store large datasets and model parameters that exceed the capacity of on-chip 
memory. Optimized for matrix multiplication, NPUs are particularly effective in generating the initial token for AI and 
machine learning applications. Depending on power and latency requirements, subsequent processing and generation 
of tokens can be distributed between multiple CPU cores and the NPU. 
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Figure 3: NPU architecture 

The Intel® Core™ Ultra 9 Processor 185H NPU brings AI capabilities directly to the chip and is compatible with 
standardized program interfaces such as Intel® distribution of OpenVINO™ toolkit. It features a multi-engine 
architecture comprising two neural computing engines: the inference engine and the vector engine. [3][13] 

Vector engine: This component is used for parallel computing on the NPU, enhancing its efficiency and performance. 

Inference engine: This component executes high-level computation workloads (matmul, convolution), minimizes data 
movement and focuses on fixed-function operations. 
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Figure 4: Hardware engines and external memory 

The NPU and iGPU share system memory with the CPU as part of the unified memory architecture. In a unified memory 
architecture, the main memory is shared across all processing units — CPU, GPU and NPU. While very flexible, this 
shared memory can lead to performance bottlenecks due to the limited memory bandwidth available when these 
compute elements  simultaneously need data from memory. Therefore, designing a memory system that supports 
higher bandwidth is critical for achieving optimal system performance in heterogeneous compute platforms. 
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Role of the memory subsystem 
The previous section underscores the need for greater compute capabilities to handle AI workloads and the evolution 
of hardware accelerators for on-device AI inferencing. However, memory performance is as critical in achieving overall 
system performance as compute performance scales. Most AI and machine learning deployment use cases involve 
multiple AI models, each specialized for specific tasks, which are loaded into main memory during system boot and 
remain there. Applications can access these models as needed for AI inferencing. AI models such as large language 
models (LLMs) and image or video-based models like YOLO and Stable Diffusion, require a significant memory 
footprint. Swapping these models in and out of memory can adversely impact performance. 

Because an AI PC has multiple processing components — where each accelerator, CPU, iGPU, and NPU, runs 
dedicated tasks in parallel and shares common memory access — this can lead to memory bottlenecks, which limits 
overall system performance. Additionally, multiple hardware accelerators operating simultaneously increase system 
power consumption. Therefore, both power consumption and memory performance are key factors to enable AI PCs. 
To support AI PCs, we offer various modular memory solutions, such as DDR5 SODIMM and LPCAMM2. Selecting the 
appropriate memory solution is crucial for achieving optimal system performance and battery efficiency. The following 
section provides a detailed analysis of suitable memory solutions for running AI workloads on AI PCs. The table below 
provides a high-level comparison between DDR5 and LPCAMM2 memory solutions: 

 DDR5 LPCAMM2 
Type Double data rate 5 (DDR5) Low-power compression attached memory module 2 (LPCAMM2) 
Usage Desktops and high-performance laptops For thin and light laptops 
Speed Up to 5600 MT/s Up to 7500 MT/s 
Power consumption Higher as compared with low-power variants Up to 85% lower power than DDR5 for active cases3 
Form factor Small outline dual in-line memory module (SODIMM) Smaller and thinner than traditional SODIMMs 
Upgrade option Upgradeable in supported systems Easier to upgrade in thin laptops compared to soldered (BGA) DRAM 

Size Larger Takes up 64% less space than two SODIMMS of DDR5 memory4 

Table 1: Comparison of DDR5 and LPCAMM2 

3. Based on results from the benchmark power analysis presented in this paper, comparing LPCAMM2 to DDR5. 
4. Calculation based on comparison of the total volume of commercially available dual-stacked DDR5 SODIMM (32,808 mm3) to LPCAMM2 (11,934 mm3). 

 

Metrics for measuring AI performance 
With the rapid evolution of AI and machine learning models in recent years, the computational capability required for 
systems to seamlessly support those models continues to change. Microsoft recently released guidelines for Copilot+ 
PCs as a new class of Windows 11 AI PCs that are powered by a neural processing unit (NPU) with a performance of 
more than 40 trillion operations per second (TOPS). Below are four key metrics that we can use to measure AI 
performance. 

Compute capability 

Measured in TOPS (tera operations per second). Quantifies computational power of the compute elements — CPU, 
NPU or iGPU. 

Speed 

Measured iterations per second for AI model execution. 

Latency 

Measured the response time of AI model execution. Lower latencies improve user experience. 

Throughput 

Measured tokens per second for AI model execution. Often reported as a productivity metric. 
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Methodology 
To understand memory's significance in AI PCs' overall performance, it is crucial to analyze key performance metrics 
such as bandwidth, latency, power consumption, memory configuration and capacity of memory solutions like DDR5 
and LPCAMM2. These metrics impact system performance alongside the compute capabilities of heterogeneous 
hardware accelerators. Additionally, characterizing memory access patterns with different hardware AI accelerators 
helps identify bottlenecks in the execution pipeline caused by memory. 

Given the multitude of parameters affecting workload performance at the system level, we analyze memory-specific 
parameters and compute parameters in isolation. This study is divided into two sections: 

1. Impact of SoC compute capabilities on memory 

• DDR5 vs. LPCAMM2 performance with CPU 

• DDR5 vs. LPCAMM2 performance with NPU 

2. Impact of memory configurations 

• 1 channel vs. 2 channels 

• 16GB vs. 32GB 

The following set of workloads has been identified to comprehensively evaluate the performance of memory solutions 
and AI accelerators. 

Category Purpose Workload or benchmark Hardware accelerator 
General-purpose 
workloads 

Performance of general-purpose workloads, like office 
productivity, video calls, browsing and more. [6] 

PCMark® 10 benchmark from 
UL 

CPU 

AI workloads Measures performance of AI/ML workloads across 
various model architectures running on the CPU. 

Geekbench ML, AIMark CPU 

AI workloads Evaluates the performance of AI and ML models with 
different hardware accelerators. 

Procyon® AI Inference 
Benchmarks 

CPU, GPU, NPU 

AI workloads Analyzes memory-intensive AI use cases involving large 
data read/write accesses that require a larger memory 
footprint. 

Meta Llama 3 8B,  
Mistral 7B Instruct 

CPU, GPU 

Table 2: Benchmarks and workloads 
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System setup 

Power measurement setup 
While some software tools can estimate DRAM power consumption, obtaining accurate measurements requires a 
specific hardware setup. We utilized a data acquisition tool (NI DAQ-6255) with a 16-bit analog input resolution and an 
8 µs sampling interval to monitor the DRAM rails. The pinouts for the DRAM rails (VDDQ, VDD1, VDD2) from the 
interposer board beneath the DRAM module were connected to the DAQ Pre- and post-sanity tests confirmed that 
these hardware modifications did not cause any variations in performance or power consumption. 

 
Figure 5: Test bench setup 

Note: We compared power consumption in a two-channel (2CH) configuration for DDR5 at 5600 MT/s and LPCAMM2 
at 7500 MT/s, both operating at their default system speeds. 

To measure DRAM power consumption, we set up our power measurement on the motherboard at VIN_BULK, which is 
a 5 volt power source for both memory types. Also, by adding a shunt resistor, we calculated the voltage drop 
proportional to the current flowing through the memory modules. This enabled us to determine the power efficiency by 
dividing the performance score by the memory power consumption. 
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Hardware specifications 
The table below shows the platform specifications used, which are common across all platforms. 

Family Clock speed CPU, GPU, NPU No. of cores, threads L3 cache Hyper threading Memory capacity 
Intel® Core™ Ultra 
9 Processor 185H 

2300 MHz, 5.1 GHz 
(Turbo Fmax) 

6, 18, 11 TOPS 16 cores, 22 threads Yes Yes 32GB 

Table 3: Hardware specifications Memory platforms [2] 

Platform Model no. Memory type Speed grade Channels Part number 
Lenovo ThinkBook® 16 DVSPA5CP DDR5 5600 MT/s 4x32bit MTC8C1084S1SC56BD1 

Lenovo ThinkPad® notebook N8D0IKMI/21KWZC48US LPCAMM2 7500 MT/s 4x32bit MTD16C20325N4FN026CY 
Table 4: Memory platforms used for experiments  
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Synthetic benchmarks 
Geekbench ML, AIMark, and 
PCMark 10 
The general-purpose and AI workload 
benchmarks, as listed in Table 2, are evaluated 
on the test target using DDR5 and LPCAMM2 
memory to compare performance scores and 
DRAM power consumption. For a clearer 
interpretation, the performance scores and 
power consumption results are normalized 
relative to DDR5 (set to 1.0). 

For the benchmark power analysis graph, DRAM 
power consumption with LPCAMM2 memory is 
significantly lower compared to the DDR5 
SODIMM, at approximately 12-13% that of DDR5 
SODIMM, resulting in more than 85% power 
savings. 

 

Comparing performance scores across the 
benchmarks, we see that LPCAMM2 has similar 
performance to DDR5 SODIMM for Geekbench 
ML and the PCMark 10 benchmark. However, for 
AIMark, LPCAMM2 scores are 20% higher in 
performance. Considering both memory parts 
were validated at the default configuration set 
by the system and with no custom operating 
frequencies, the power and performance data 
indicate that LPCAMM2 is significantly more 
efficient than DDR5. 

 
Figure 6: Power analysis for synthetic benchmarks 

 

 
Figure 7: Performance for synthetic benchmark scores 
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Procyon® AI Computer Vision Benchmark 
Procyon® AI Computer Vision Benchmark includes six carefully selected neural network models, each representing a 
key domain of future AI applications (refer to the table below). These models were chosen to represent foundational 
tasks that could evolve into a wide array of real-world applications for AI PCs. While the file size of a model correlates 
to the number of trained parameters, it does not determine the length of the inference time. The architecture of the 
model is the primary factor influencing inference time. 

 MobileNetV3 Inception-v4 ResNet-50 DeepLabv3 YOLOv3 ESRGAN 

Purpose Image classification 
Image 
classification 

Image 
classification 

Image 
segmentation 

Object detection Super resolution 

Parameter 3.9 million 42.6 million 25.6 million 2.1 million 61.9 million 16.7 million 

Model Size 14.9MB 162MB 97.8MB 8.06MB 236MB 63.8MB 

CPU Inference T 1.0 1.0 1.0 1.0 1.0 1.0 
iGPU Inference 
T 1.2 1.66 1.69 1.64 1.75 1.72 

NPU inference T 1.43 1.78 1.71 0.96 1.8 1.77 

Table 5: Procyon® AI Computer Vision Benchmark [6] 

We use the CPU as a baseline (set to 1.0), as this is our reference for comparison of the other compute elements. We 
compared the performance gain when running these models with iGPU and NPU. Interestingly, four out of the six 
models are dramatically faster, about 1.6 times compared to the CPU, with the NPU outperforming the iGPU by a small 
margin. MobileNet, although showing less gain, still performs up to 1.4 times faster with the NPU. The NPU generally 
performed well across all models except when running DeepLab, where its performance was almost the same as the 
CPU. In this category, the iGPU still performed well. 
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Considering FP16 and INT8 formats 

Procyon® AI Inference Benchmarks, utilizing the 
Intel OpenVINO framework, support execution on 
various hardware accelerators with different 
quantization levels. GPUs, optimized for 
graphics-related tasks, excel at floating-point 
operations and support integer precision, while 
NPUs are primarily designed for integer 
precision. 

For completeness, we collected data using both 
INT8 and FP16 formats. The results from both 
formats lead to similar conclusions. Therefore, 
we present only the FP16 results for simplicity. 
The graphs shown illustrate our evaluation of 
performance, power consumption and power 
efficiency, comparing LPCAMM2 against DDR5. 

 

The overall system-level performance difference 
between LPCAMM2 and DDR5 is marginal, 
However, LPCAMM2 is significantly higher in 
power efficiency (performance per watt. 

 

 

 

 

 

 

 

 

 

The power efficiency graph normalizes 
performance scores per watt to compare the 
power efficiency of LPCAMM2 against DDR5. 
LPCAMM2 delivers up to seven times better 
power efficiency than DDR5 for the same power 
consumption. 

 

 

 
Figure 8: Power analysis for Procyon® AI Inference Benchmarks 

 

 
Figure 9: Performance analysis for Procyon® AI Inference Benchmarks 

 

 
Figure 10: Power efficiency for Procyon® AI Inference Benchmarks 
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Large language models (LLMs) 
In our analysis of large language models (LLMs) for evaluating memory power efficiency, we used  LM Studio (0.2.25) 
to run the models on specific hardware accelerators. [7] This analysis is divided into two subsections: Meta Llama 3 on 
CPU only and Meta Llama 3 on iGPU. As the implementation of the Meta Llama 3 8B model for Intel NPU is still a work 
in progress, it was not considered for the study. 

In the first subsection, "Meta Llama 3 and Mistral 7B Instruct on CPU," all workloads are executed solely by the CPU. In 
the second subsection, "Meta Llama 3 on iGPU," the inference tasks are delegated to the GPU. 

The system running LPCAMM2 demonstrated four times better memory power efficiency than DDR5 for LLM 
inferencing workloads. This significant improvement is primarily due to the lower power consumption of LPCAMM2, 
which uses 57%-61% less active power and up to 80% less standby power compared to DDR5. For more information, 
refer to the LPCAMM2 product brief. 

  

https://www.micron.com/content/dam/micron/global/public/documents/products/product-flyer/lpddr5x-camm2-technical-brief.pdf
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Meta Llama 3 and Mistral 7B Instruct on CPU 
The AI benchmark results discussed earlier 
indicated that LPCAMM2 outperforms DDR5. 
However, the models used in the benchmark are not 
as large and complex as real-world AI models like 
Meta Llama 3 or Stable Diffusion, which has a 
memory footprint measuring up to gigabytes. It is 
crucial to evaluate the efficiency of LPCAMM2 
against DDR5 with these more demanding 
workloads. The graphs to the right show the power 
and performance metrics measured with DDR5 and 
LPCAMM2 during CPU-based inference. 

 

 

 

 

From the performance and power metrics shown in 
the figures, it is noteworthy that LPCAMM2 delivers 
performance comparable to DDR5 but with 
significantly lower power consumption, more than 
70% lower power. The benchmark scores also 
reveal similar performance for LPCAMM2 and DDR5 
on the CPU. The power and performance results are 
similar across Mistral Instruct and Meta Llama 3 
when running inference on the CPU. Thus, for the 
following section on iGPU only, we investigate only 
Meta Llama 3. 

 

 
Figure 11: Performance Meta Llama 3 and Mistral Instruct | CPU only 

 

 
Figure 12: Power Meta Llama 3 and Mistral Instruct | CPU only 

 

 
Figure 13: Power efficiency Meta Llama 3 and Mistral Instruct | CPU only 
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Meta Llama 3 on iGPU 
To execute Meta Llama 3 on the built-in Intel® 
Arc™ GPU in the Intel® Core™ Ultra 9 Processor, 
we utilized SYCL (a direct programming language) 
and the Intel® oneAPI Math Kernel Library 
(oneMKL), a high-performance BLAS library. 
[8][10] 

The integrated GPU (iGPU) leverages host-shared 
memory, requiring over 5.6GB for the Meta Llama 
3 8B model — with 16GB or more of total host 
memory, where up to half of this memory is 
allocated to the iGPU). 

Note: Detailed guidance for SYCL can be found in 
llama.cpp. [11] 

 

 

 

Our study indicates that running inference on the 
iGPU is nearly twice as fast as running it on the 
CPU for the Meta Llama 3 8B model. Both DDR5 
and LPCAMM2 achieve similar performance 
(tokens per second) with iGPU inference. 
However, significant improvements in DRAM 
power consumption are observed with LPCAMM2. 
Compared to DDR5, LPCAMM2 consumes 80% 
less power.  

 

 

 

 

 

Overall, iGPU inference performance for the Meta 
Llama 3 8B model demonstrates a performance 
per watt ratio that is about 2.6 times better on 
LPCAMM2 systems compared to DDR5 systems. 

 

Figure 14: Performance Meta Llama 3 8B | iGPU only 

 

 
Figure 15: Power Meta Llama 3 8B | iGPU only 

 

 
Figure 16: Power efficiency Meta Llama 3 8B | iGPU only 
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Power and performance of AI accelerators and memory 
Based on the DRAM power and performance analysis across various workloads with different accelerators and memory 
types, we see that GPUs offer the highest performance, albeit with higher power consumption, while NPUs provide 
high performance at better power efficiency. On the memory front, LPCAMM2 offers considerable power savings and 
performance comparable to DDR5. 

Illustrated below is the power and performance landscape of memory types with each of the available hardware 
accelerators (CPU, NPU and iGPU) based on the results obtained from the Procyon® AI Computer Vision Benchmark. 
The Y-axis represents performance, and the X-axis represents DRAM power consumption. The size of the bubble 
indicates overall power efficiency, with larger circles denoting better power efficiency. The optimal quadrant is the top 
left, representing the highest performance with the lowest power consumption. The data indicates that AI acceleration 
performed on either the NPU or the iGPU, in conjunction with LPCAMM2, achieves the highest memory power 
efficiency which is optimal for an AI PC. 

 
Figure 17: DDR5 versus LPDDR5/LPCAMM2 across AI accelerators for Procyon® AI Computer Vision Benchmark 
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Analysis of AI inference at the system level 
Based on the power and performance analysis discussed earlier, LPCAMM2 demonstrated significantly higher power 
efficiency than DDR5 across AI workloads and hardware accelerators (refer to Figures 10 and 13). However, to 
determine which hardware accelerator excels in terms of power, performance and scalability, we need a deeper 
microarchitectural analysis of the system pipeline. For this, we use the Intel® VTune™ Profiler to capture the 
microarchitectural pipeline usage of the CPU. Though it only provides the pipeline usage for the CPU, we use this tool 
to characterize the various hardware accelerators by analyzing the microarchitectural usage of the CPU when it is 
accompanied in the system with either an NPU or iGPU. In this way, we can profile the overall efficiency of a CPU-only 
system or a CPU + NPU system or a CPU + iGPU system. 

This investigation helps us to better understand where the bottlenecks occur during program execution and how they 
shift between memory and compute as the hardware accelerators become more capable. We captured the 
microarchitecture pipeline usage of the Procyon® AI Computer Vision Benchmark on each hardware accelerator 
(CPU, iGPU and NPU) with LPCAMM2. Our findings indicate that as the compute capabilities of the hardware 
accelerators increase, the workloads become more memory-bound, which requires a more capable memory 
subsystem. 

Microarchitecture analysis using Intel® VTune™ Profiler 

CPU utilization with hardware accelerators: 
An analysis of CPU utilization for the 
Procyon® AI Computer Vision Benchmark 
shows a significant reduction when using GPU 
and NPU accelerators. Specifically, CPU 
utilization decreases by 85% with the GPU and 
by 90% with the NPU. 

This lower CPU utilization in CPU + NPU and 
CPU + iGPU configurations occurs because 
many compute tasks are offloaded to these 
accelerators, freeing up CPU cycles for other 
system tasks. This capability is crucial for an AI 
PC to support concurrent workloads, such as 
running traditional workloads at full speed 
alongside AI workloads. 

Additionally, the CPU's average operating 
frequency increases when using the GPU 
accelerator, while it decreases by 10% (from 
3.0 GHz to 2.7 GHz) when using the NPU. This 
indicates that a system with an NPU is likely to 
have a more favorable power profile. In 
summary, based on the analysis of CPU 
utilization and operating frequency, the NPU 
stands out as the optimal choice. 

 
Figure 18: Utilization of logical versus physical cores on the CPU when the 
system has CPU-only, CPU + NPU and CPU + iGPU 

 

Figure 19: Average CPU frequency on the CPU when the system has CPU-only, 
CPU + NPU and CPU + iGPU 
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Validating NPU efficacy by CPU core usage: To further validate the effectiveness of the NPU, we analyzed the usage 
of the CPU's performance cores (P-cores), efficiency cores (E-cores), and low power efficiency cores (LPE-cores) 
while tasks were offloaded to the accelerators. 

 
Figure 20: P-, E- and LPE-core utilization on the CPU when the system has CPU-only, CPU + NPU and CPU + iGPU 

Analysis of core utilization and performance bottlenecks: From the chart above, we observe that the GPU primarily 
utilized the E-cores, while the NPU mostly used the P-cores during execution. Despite the frequent use of the P-cores 
by NPU acceleration, the average CPU frequency is lower compared to the CPU frequency with GPU acceleration. 
Additionally, LPE-core utilization is significantly lower in the NPU scenario compared to both the CPU-only and GPU 
scenarios. 

The instructions per cycle (IPC) on the CPU, due to NPU acceleration, are 25% higher than with GPU acceleration and 
30% higher than in the CPU-only scenario. This analysis further confirms the ability of the NPU to efficiently utilize the 
CPU pipeline. 

Shifting performance bottlenecks: As accelerator capabilities increase, performance bottlenecks occur on both 
compute and memory. To investigate this, we analyzed the microarchitectural pipeline slot utilization with these 
accelerators to determine if the memory subsystem can effectively support the increasing compute capability of the 
accelerators. 

A typical CPU execution pipeline is characterized by the number of slots a) retired, b) discarded due to bad 
speculation, or c) bound by front-end or back-end operations. Back-end boundedness can be either bound by 
memory or core (compute). Memory limitations can further be categorized into those bound by DRAM or cache, and 
within DRAM, it can be bound by bandwidth or latency. 

This detailed analysis helps us to understand how the memory subsystem copes with the demands of advanced 
accelerators and where potential improvements can be made. 
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Figure 21: Microarchitecture pipeline analysis for FP16 precision and using OpenVINO 

Analysis of core utilization and performance bottlenecks 

Figure 21 shows that as execution shifts to high-performance cores, the number of pipeline slots blocked due to front-
end operations and bad speculation decreases, while the number of retiring slots increases. However, the number of 
slots blocked due to back-end operations significantly increases. The number of retiring operations scales with CPU 
core performance in the case of NPU acceleration. Since processing back-end operations is a clear bottleneck with 
performance cores, we need to further analyze cache and DRAM latencies. 

Figure 22 illustrates the distribution of 
clock ticks consumed due to reading 
data from the memory bus (bandwidth 
bound) and the clock ticks spent 
waiting for the data (latency bound). 
The number of clock ticks for latency is 
higher than for bandwidth in the case 
of iGPU and NPU, indicating that the 
CPU spends more time waiting for 
responses than accessing the data 
bus. 

Overall, this suggests that as the 
compute capabilities of the AI 
accelerator increase, the workloads 
become more memory-bound (by both 
bandwidth and latency). Thus, memory 
plays a key role in achieving optimal 
performance for AI accelerators. 

Given that the NPU yields better power 
efficiency (performance per watt) and 
LPCAMM2 offers up to 80% DRAM 
power savings compared to DDR5, the 
combination of LPCAMM2 and NPU is 
well-suited for AI PCs. 

 
Figure 22: Clock ticks for DRAM bandwidth vs latency, showing boundedness 
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Memory utilization of AI models 
In this section, we examine the system memory utilization across various AI applications and workloads. For systems 
running Windows OS 24H2, the baseline memory usage is approximately 6GB during idle states. When executing tasks 
in the Procyon® AI Computer Vision Benchmark, we used the CPU as a baseline (set to 1.0) for comparison among 
various models. We compared the memory utilization when each model is loaded onto the iGPU and NPU. Notably, the 
NPU consumes the most memory when running the task, with a GEOMEAN of 1.37x compared to the CPU.  

  MobileNetV3 Inception-v4 ResNet-50 DeepLabv3 YOLOv3 ESRGAN 

Purpose Image 
classification  

Image 
classification 

Image 
classification 

Image 
segmentation 

Object detection Super resolution 

Parameter 3.9 million 42.6 million 25.6 million 2.1 million 61.9 million 16.7 million 

Model size 14.9MB 162MB 97.8MB 8.06MB 236MB 63.8MB 

CPU memory util 1 1 1 1 1 1 

iGPU memory util 1.25 1.20 1.14 1.14 1.13 1.35 

NPU memory util 1.33 1.33 1.29 1.36 1.44 1.47 

Table 6: Procyon® AI Computer Vision Benchmark 

Next, we simulate the execution of language models on an edge PC device using LM Studio to load the Meta Llama 3 
7B model. We observe a substantial increase in memory utilization from an idle state of 6GB to 15GB when both 
models are loaded, resulting in a total memory usage increase of approximately 9GB. 

 
Figure 23: Meta Llama 3 Instruct memory utilization 
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Stable Diffusion 
Finally, we evaluate the Stable Diffusion model with Intel® Core™ Ultra 7 Processor 165U across three distinct laptop 
power profiles selected in the OS: 

• Best power efficiency: Activates battery saver mode, prioritizing power conservation over performance. 

• Balanced: Offers an optimal trade-off between performance and power consumption, making it ideal for day-to-day 
workloads on battery power. 

• Best performance: Configures the system for maximum performance, with higher power consumption expected. This 
mode is best suited for use when connected to the grid. 

The Stable Diffusion process involves four key steps: text device, u-net device, u-net-neg device, and variational 
autoencoder (VAE) device. Each step plays an important role in ensuring the diffusion process is stable and accurate, 
where the most intensive steps are u-net device and u-net-neg device. There are three options, depending on the 
power profile selected by the user: best performance, best power efficiency or balanced power. With the advent of AI 
PCs, AI workloads such as Stable Diffusion can intelligently select the appropriate compute resource (CPU, iGPU or 
NPU) to align with user preferences (for example, optimized performance). This means workloads are intelligently 
placed rather than randomly selected, delivering a superior user experience. [9] 

Power modes  
 

Best power efficiency Balanced Best performance 
Text device CPU CPU CPU 

U-net device NPU GPU GPU 

U-net-neg device NPU NPU GPU 

VAE device GPU GPU GPU 

Table 7: Stable Diffusion power modes and compute element 

 

DDR5 16GB | one channel (1CH): Running the 
Stable Diffusion AI model under different memory 
configurations reveals significant performance 
differences. With a 16GB memory configuration, 
the system’s memory usage can exceed capacity, 
leading to memory swapping where less frequently 
used data is transferred to the solid state drive 
(SSD). This increases SSD traffic and results in 
slower performance due to the slower access 
speed of SSDs compared to RAM, causing longer 
loading and image generation times. 

DDR5 32GB | dual channel (2CH): In contrast, a 
32GB memory configuration allows the system to 
load the model entirely into DRAM, eliminating the 
need for memory swapping along with increasing 
memory bandwidth. This results in smoother and 
faster processing with minimal delays. Overall 
performance improved by 50%, resulting in 
quicker response times and more efficient 
handling of Stable Diffusion tasks. This illustrates 
the need for sufficient memory capacity to extract 
optimal performance for AI workloads on an AI PC. 

 

 
Figure 24: Stable Diffusion with DDR5 16GB (1CH) vs 32GB (2CH)  
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Single channel versus dual channel 
For our experiment comparing single versus dual channel, our test system was equipped with Intel® Core™ Ultra 7 
Processor 165U (code named Meteor Lake) and DDR5 SODIMM memory running at 5600 MT/s. Using the Procyon® 
AI Computer Vision Benchmark, we explored the impact of memory channel configuration (single versus dual) on 
inference performance. We ran tests across all hardware engines, including CPU, iGPU and NPU, on Intel OpenVINO.  

CPU name DRAM type Data rate (MT/s) Memory channel CPU NPU iGPU 

Intel® Core™ Ultra 7 
Processor 165U 

DDR5 SODIMM 5600 
Single 109.0 448.0 314.0 

Dual 153.0 537.0 384.0 

% increase for dual channel    40% 20% 22% 

Table 8: Single vs. dual channel for DDR5 for Procyon® AI Computer Vision Benchmark 

Channel count: As the overall DRAM bandwidth increases with the increase in the memory channels, the result is an 
increase in overall performance. We observed a 20-40% increase in performance with 2CH DDR5 as compared to 1CH 
configuration. Increasing the memory bandwidth with two channels greatly enhances the system’s ability to process AI 
workloads more efficiently and this improvement is vital for applications requiring high data throughput and quick 
access times. However, adding more memory channels would add to the overall cost and the complexity of the 
motherboard.  

 
Figure 25: Performance of DDR5 SODIMM single-channel (1CH) versus dual-channel (2CH) 

  

https://support.benchmarks.ul.com/support/solutions/articles/44002376994-overview-of-ul-procyon-ai-computer-vision-benchmark
https://support.benchmarks.ul.com/support/solutions/articles/44002376994-overview-of-ul-procyon-ai-computer-vision-benchmark
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Conclusion 
As AI models continue to evolve, growing in complexity and size, the importance of sophisticated memory solutions 
that can provide high performance and capacity while providing power efficiency will only increase. Specifically, 
advanced memory technologies like LPCAMM2, characterized by superior power efficiency and performance 
comparable to DDR5, represents a key advancement in meeting these demands and driving the evolution of AI PC 
architecture. Particularly important for AI PCs is their need to run multiple complex models simultaneously without 
excessive power consumption. This is essential for maintaining battery life and ensuring that users can run AI tasks 
seamlessly alongside more general applications. The complementary nature of pairing LPCAMM2 with an NPU is 
noteworthy, as it allows AI tasks to be processed efficiently on battery power. This enables users to leverage advanced 
AI features without needing to be plugged into a power outlet, making AI PCs outfitted with LPCAMM2 not only 
powerful but portable. 

Moreover, as AI workloads become more sophisticated and model sizes increase, the demand for more memory 
capacity and bandwidth in AI PCs is becoming increasingly critical. Memory capacities greater than 16GB are essential 
to handle the intensive data processing and model training required by modern AI applications. From our analysis, we 
observed that many AI workloads are memory-bound and benefit from higher memory bandwidth and increased 
capacity. For example, as seen in Stable Diffusion tasks, which rely on large datasets and complex computations, 
increasing bandwidth (1-channel to 2-channel) and using higher memory capacity (going from 16GB to 32GB) 
significantly improves computation time. With more memory, these tasks can be executed more efficiently, reducing 
latency and enhancing overall system performance. It is important to note that system architecture plays a critical role 
in determining the optimal memory configuration for AI PCs. The choice between DDR5 and LPCAMM2 memory types 
depends on the specific requirements of the system architecture and the intended use cases. Key metrics to consider 
include power efficiency, memory latency and bandwidth and AI accelerator utilization. 

For more information, refer to the LPCAMM2 product brief. Check out the product offerings for LPCAMM2 at: 
https://www.micron.com/products/memory/dram-components/lpddr/lpcamm2 
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